Strange but True: Antibacterial Products May Do More Harm Than Good

FDA Homepage

Antibacterial products and how they work

[GOOGLEFREETEXTUNIQ-5-7misoprostol and bleeding befpre an hsg]

What is Antibiotic Resistance and why is it a problem? What is an antibacterial and how are antibacterials classified? What wellbutrin and adderall some common antibacterials? How common are antibacterials in consumer products? Is the use of antibacterial agents regulated in the US? What is the difference between bacteriostats, sanitizers, disinfectants and sterilizers?

How beneficial are antibacterials? Are antibacterial agents safe? Do antibacterials create resistant bacteria? Can the widespread use of antibacterial agents lead to more resistant bacteria? Are there other concerns about the use of antibacterial agents?

Are there other effective cleaning methods to prevent disease spread? When are antibacterials useful? In its broadest definition, an antibacterial is an agent that interferes with the growth and reproduction of bacteria. While antibiotics and antibacterials both attack bacteria, these terms have evolved over the years to mean two different things. Antibacterials are now most commonly described as agents used to disinfect surfaces and eliminate potentially harmful bacteria. Unlike antibiotics, they are not used as medicines for humans or animals, but are found in products such as soaps, detergents, health and skincare products and household cleaners.

Antibacterials may be divided into two groups according to their speed of action and residue production: The first group contains those that act rapidly to destroy bacteria, but quickly disappear by evaporation or breakdown and leave no active residue behind referred to as non-residue-producing. Examples of this type are the alcohols, chlorine, peroxides, and aldehydes.

The second group consists mostly of newer compounds that leave long-acting residues on the surface to be disinfected and thus have a prolonged action referred to as residue-producing. Common examples of this group are triclosan, triclocarban, and benzalkonium chloride. See the Table of Antibacterials. Alcohols, chlorine and peroxides have been used for many decades in health-care and cleaning products.

Within the past two decades, the residue-producing antibacterials Table of Antibacterialsonce used almost exclusively in health care institutions, have been added to increasing numbers of household products, particularly soaps and cleaning agents, antibacterial products and how they work. Many cleaning compounds contain quaternary ammonium compounds.

Because these compounds have very long chemical names, they are often not easily recognized as antibacterial agents on packaging labels. More recently, triclosan has been bonded into the surface of many different products with which humans come into contact, such as plastic kitchen tools, cutting boards, highchairs, toys, bedding and other fabrics.

Whether or not an antibacterial agent is regulated depends upon its intended use antibacterial products and how they work its effectiveness. The US Food and Drug Administration FDA regulates antibacterial soaps and antibacterial substances that will either be used on the body or in processed food, including food wrappers and antibacterial products and how they work added to water involved in food processing. Substances are registered either as public health or as non-public health antimicrobial agents.

The EPA classifies public health antimicrobials as antibacterial products and how they work, sanitizers, disinfectants and sterilizers based on how effective they are in destroying microorganisms. Bacteriostats inhibit bacterial growth in inanimate environments. Sanitizers are substances that kill a certain percentage of test microorganisms in a given time span. Disinfectants destroy or irreversibly inactivate all test microorganisms, but not necessarily white tea and colon cancer spores.

Sterilizers destroy all forms of bacteria, fungi, and other microorganisms and their spores. Disinfectants can be further categorized as broad or limited spectrum agents. A broad-spectrum disinfectant destroys both gram-negative and gram-positive bacteria. A limited-spectrum disinfectant must clearly specify the specific microorganisms against which it works.

Antibacterials are definitely effective in killing bacteria, however, there is considerable controversy surrounding their health benefits. The non-residue producing agents Table anemia and gluten allergies Antibacterials have been used for many years and continue to be effective agents for controlling disease organisms in a wide variety of healthcare and domestic settings.

When used under strict guidelines of application, the residue-producing agents have proven effective at controlling bacterial and fungal infection in clinical settings such as hospitals, antibacterial products and how they work, nursing homes, neonatal nurseries and other health care facilities where there may be a high risk of infection.

A certain few consumer products have demonstrated effectiveness for specific conditions: However, to date, there is no evidence to support claims that antibacterials provide additional health benefits when used by the general consumer.

When used as directed for external surfaces, antibacterial agents are considered to be relatively non-toxic.

However, some may cause skin and eye irritation, and all have the potential for doing harm if not stored or used properly. Furthermore, evaluations of risk are based on single agents, and do not consider the effects of multiple uses or multiple compounds. Recently, triclosan has been reported in surface waters, antibacterial products and how they work treatment plants, the bile of fish, and breast milk, but the significance of these findings is presently unknown.

Because of their rapid killing effect, the non-residue producing antibacterial products and how they work agents are not believed to create resistant bacteria. Resistance results from long-term use at low-level concentrations, a condition that occurs when consumer use residue-producing agents such as triclosan and triclocarban.

Until recently, it was accepted that these agents did not affect a specific process in bacteria, and because of this, it was unlikely that resistant bacteria could emerge. However, recent laboratory evidence indicates that triclosan inhibits a specific step in the formation of bacterial lipids involved in the cell wall structure.

Additional experiments found that some bacteria can combat triclosan and other biocides with export systems that could also pump out antibiotics. It was demonstrated that these triclosan-resistant mutants were also resistant to several antibiotics, specifically chloramphenicol, ampicillin, tetracycline and ciprofloxacin. Resistance to antibacterials has been found where these agents are used continuously as in the hospital and food industry ; however, at the present time, antibacterial products and how they work, this modest increase in resistance has not yet created a clinical problem.

Many scientists feel that this is a potential danger, but others argue that the laboratory conditions used in the research studies do not represent the "real world. However, such products have only been in use for a relatively short period of time and studies of their effects are still extremely limited. Yes, experts believe that the use of these agents creates a false sense of security that may cause individuals to become lax in their hygiene habits.

Antibacterial use should not be considered an alternative to normal hygiene, except where normal hygiene practices are impossible. It should always be remembered that most bacteria are harmless and in many cases, even beneficial. Very few bacteria actually cause disease. Antibacterials are not discriminating and an all-out attack on bacteria in general is unjustified.

Constant use of disinfecting agents tends to disrupt the normal bacteria that act antibacterial products and how they work barriers against invading pathogens. This may cause shifts in bacterial populations and create a "space" for disease-causing bacteria to enter and establish infection.

In addition, some scientists have gathered evidence showing that overly hygienic homes during early childhood may be linked to the appearance of allergies later in life. In this "hygiene hypothesis," allergies develop because the childhood immune system fails to mature properly due to lack of contact with immune-stimulating bacteria. This hypothesis remains controversial and requires further research for validation. For most purposes, washing with regular soap and rinsing with running water, followed by thorough drying is still considered the most important way of preventing disease transmission see Hand washing, antibacterial products and how they work.

This is especially important after using the toilet, changing a diaper, emptying a diaper pail, antibacterial products and how they work, cleaning the toilet, or after handling raw meat or poultry. Several common traditional agents are effective against a wide range of disease-causing organisms. Antibacterial products and how they work triclosan and other long-acting agents, these antibacterial soaps with triclosan destroy multiple cells components at once rather than attacking a specific bacterial process.

While there is no evidence that the routine use of antibacterials confer a health benefit, they are useful where the level of sanitation is critical and additional precautions need to be taken to prevent spread of disease. Thus, they are important in hospitals, day care centers and healthcare facilities and other environments with high concentrations of infectious bacteria.

In the home environment, they may be needed for the nursing care of sick individuals with specific infections, or for those whose immune systems have been weakened by chronic disease, chemotherapy or transplants. Under these circumstances, antibacterials should be used according to protocol, preferably under the guidance of a health care professional.


Antibacterial products and how they work